База знаний по трехмерному проектированию в Pro/Engineer, Creo, Solidworks, электронике на STM32
Обучение Creo 3. Расчет радиатора охлаждения с принудительной вентиляцией
Поставим перед собой непростую задачу: рассчитаем распределение температур по объему радиатора (охладителя) в условиях принудительного обдува в воздушном канале. Радиатор будет с пластинчатыми ребрами. Не мудрствуя лукаво, воспользуемся построениями радиатора из статьи Creo 3. Создание объединенной детали с помощью наследования.
Подготовка геометрии
Итак, есть радиатор длиной 300 мм и на нем установлена Диодная сборка LD411660 PowerEx. Через диодную сборку проходит ток 600 А, значит она выделяет приблизительно 680 Вт, как указано в документации.
Для расчета необходимо также знать сечение радиатора, через которое пойдет воздушный поток. Для этого в модели радиатора вычислим сечение. С помощью команды Заполнить выполним построение эскиза сечения на торце радиатора.
В эскизе воспользуемся командой Проецировать / По контуру для повторения контура профиля радиатора.
Теперь удалим лишние линии и построим недостающие линии, повторяя сечение воздушного канала. Воздушный канал будет немного больше профиля радиатора. Завершаем выполнение команды Заполнить. Получилась поверхность нулевой толщины, что и требовалось.
Определим площадь поверхности сечения воздушного канала. Для этого воспользуемся инструментом Сводка на вкладке Анализ. Измерим площадь с помощью соответствующей кнопки .
Подготовим радиатор для расчета тепла - уберем лишнее. А именно, с помощью команды Вытянуть с опцией Удалить материал срежем всю верхнюю часть диодной сборки для построения сетки конечных элементов только для радиатора.
Тепловой расчет
Переходим к тепловым расчетам: на вкладке Приложения - команда Simulate . Выбираем Тепловой режим и затем Настройка модели .
Во первых зададим тепловую нагрузку, по-русски это называется выделяемая мощность. Делается это с помощью команды Теплота . В диалоговом окне Тепловая нагрузка выберем поверхности, оставшиеся от диодного модуля и укажем в графе Значение - 680 Вт (единицы измерения см. в выпадающем списке рядом). Это значение было получено нами ранее в начале статьи. Если приборов на радиаторе несколько, то для каждого из них отдельно нужно задать тепловую нагрузку. Нажмем Ок.
Теперь зададим Условие конвекции , т.к. именно этот режим соответствует принудительному обдуву воздухом. Выбираем поверхности ребер, потому что именно они будут обдуваться воздухом в канале. Введем значение температуры окружающего воздуха Tb = 40°C, чтобы наше изделие работало и в жарком месте в графе Температура окружающей среды. Теперь самое главное введем коэффициент конвекции h в соответствующей графе: 50.3 и выберем единицы измерения W / (m^2 K) в списке рядом.
Это число рассчитываться по значениям производительности вентилятора K3G250-RD43-01 П2/3 = 640 •2 / 3 = 426 м3/час (см. характеристики), площади поперечного сечения воздушного канала S = 4730.77 мм2 и длине ребра радиатора L = 0.3 м. Коэффициент конвекции можно определить по этим характеристикам на нашем сайте в статье Формулы расчета радиатора охлаждения.
Материал назначается с помощью команды Назначение материала . В этом окне все понятно. Самое сложное позади, впереди нас ждет непосредственно расчет!
Хорошо, можно нажимать команду Анализы и исследования . В одноименном диалоговом окне нажимаем Настройка параметров выполнения , где задаем необходимо выделить для расчета побольше оперативной памяти. Предпочтительнее задавать не меньше 4000 Гб ОЗУ. Хотя на скорость расчетов сильно влияет и процессор, особенно когда их несколько. Нажимаем ОК.
В окне Анализы и исследования продолжаем задавать условия. Выполним команду меню Файл > Новый стационарный тепловой. В нем все необходимое нам должно быть уже выбрано: набор ограничений и набор нагрузок. Остальные параметры пусть останутся по умолчанию. Нажимаем ОК. В окне Анализы и исследования нажимаем наконец Начать выполнение . Для просмотра работы можно выполнить затем команду Показать состояние исследования и отслеживать каждый этап выполнения расчета. Ведь расчет может занять порядочное время! Для ускорения рачета нам можно было бы упростить модель - убрать лишние отверстия на радиаторе, в подложке прибора, убрать скругления, фаски и т.д.
Результаты расчета
Вот, наконец, мы дождались выполнения расчета. Можно нажимать ОК в диалоговом окне Диагностика:Анализ... В окне Анализы и исследования нажимаем кнопку Проверка результатов исследования конструкции и конечно-элементного анализа .
Теперь необходимо настроить просмотр отчета по расчету в диалоговом окне Определение окна результатов. Выбираем все как на Рис.17 и нажимаем кнопку ОК и показать.
На этом все, можно полюбоваться на произведенный расчет. Creo 3 неплохо делает расцветку! Побалуйтесь с настройками отображения в диалоговом окне Определение окна результатов (если закрыть текущее окно Результаты моделирования и снова нажать кнопку кнопку Проверка результатов исследования конструкции и конечно-элементного анализа в окне Анализы и исследования). В окне Результаты моделирования попробуйте определить температуры разных точек радиатора и помощью инструмента Динамический запрос . Впечатляет!
Если результаты расчета не удовлетворяют необходимо изменить конструкцию радиатора, поставить другой вентилятор, изменить размер воздушного канала или изменить ориентацию прибора. Вариантов очень много, Creo 3 легко отработает их!
Вы спросите, а как же тепловое сопротивление между диодной сборкой и радиатором. Посмотрим документацию на Диодную сборку LD411660 PowerEx. В характеристике Thermal Resistance, Case to Sink Lubricated (RΘC-S Per Module) указано значение сопротивления с учетом теплопроводящей пасты 0.01 °C/W. Просто посчитаем перегрев: 680 Вт •0.01 °C/W = 6,8°C. На такую величину будет перегреваться диодный модуль относительно радиатора под ним.
Картинка получилась красивая, но на практике, она должна быть асимметричная - вытянутая в направлении воздушного потока (при обдуве с торца). В хвосте - перегрев.